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Abstract

We consider the problem of accuracy in heat rate estimations from arti®cial neural network (ANN) models of
heat exchangers used for refrigeration applications. Limited experimental measurements from a manufacturer are

used to show the capability of the neural network technique in modeling the heat transfer phenomena in these
systems. A well-trained network correlates the data with errors of the same order as the uncertainty of the
measurements. It is also shown that the number and distribution of the training data are linked to the performance

of the network when estimating the heat rates under di�erent operating conditions, and that networks trained from
few tests may give large errors. A methodology based on the cross-validation technique is presented to ®nd regions
where not enough data are available to construct a reliable neural network. The results from three tests show that

the proposed methodology gives an upper bound of the estimated error in the heat rates. The procedure outlined
here can also help the manufacturer to ®nd where new measurements are needed. 7 2001 Elsevier Science Ltd. All
rights reserved.

1. Introduction

Heat exchangers are complex devices used in a wide
variety of engineering applications, e.g. refrigeration

and air-conditioning systems. The complexity of these

systems is due to their geometrical con®guration, the

physical phenomena present in the transfer of heat and
to the large number of variables involved in its oper-

ation. For a heat exchanger operating with humid air

and refrigerant, some of the moisture in the air may
condense or even freeze in the ®ns and tubes modifying

the ¯ow ®eld, while inside the tubes, partial evapor-

ation of the refrigerant may cause inhomogeneous dis-

tribution of the ¯ow. These and the related physical
processes increase the di�culty of solving the govern-
ing equations based on a ®rst-principles approach. As

a consequence, experimental information of the heat
rates as functions of the variables of the system must
be determined experimentally, usually by the manufac-

turer, and presented to the user, i.e. the design engin-
eer. Such information is usually given by means of
correlations. These, however, have very little physical
bases and are usually sought to have the simplest form

that will give the best accuracy. Some applications of
correlations to condensers and evaporators are those
by Yan and Lin [1], Srinivasan and Shah [2], and

Kandlikar [3,4], among others. It is well known, how-
ever, that prediction errors in heat rates by means of
correlations are much larger than the measurement

errors, being mainly due to the data compression rep-
resented by them.
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The problem of single-phase and condensing heat

exchanger predictions has been previously addressed

using arti®cial neural networks (ANNs) [5,6]. This is

a technique that allows the modeling of physical

phenomena in complex systems without requiring

explicit mathematical representations. ANNs have

been developed in recent years and used in many

application areas, among them thermal engineering

[7]. Some examples are: analysis of thermosyphon

solar water heaters [8], heat transfer data analysis

[9], HVAC computations [10] and predictions of

critical heat ¯ux [11].

Empirical information necessary for design and

selection of heat exchangers is generated by means

of experiments. Ideally, the experimental data should

uniformly cover the entire region of parameter

space where predictions are to be made. However,

the set of geometrical and operational parameters is

extremely large and, even if each quantity is

allowed to assume a few di�erent values, the result-

ing number of required measurements is prohibitive.

A common alternative to reduce the number of ex-

periments to a practical and economical level is the

use of systematic methodologies such as those in

the design of experiments [12]. The drawback of

these methods, however, is that they fundamentally

sacri®ce information about the interaction of the

variables of the system on behalf of reducing the

number of tests and thus generate data which are

limited and cannot always represent complex inter-

actions in a high-dimensional independent-parameter

space.

Limited data o�er only partial information about

the true phenomena in heat exchangers and there-

fore empirical models, either in the form of corre-

lations or ANNs constructed from them, cannot

accurately reproduce their behavior under di�erent

conditions. Several techniques have been proposed

in the context of neural networks to determine the

con®dence intervals of estimations using the convex

hull of the data [13], linearization theories [14],

wavelets [15] or self-organizing maps [16], among

others. These, however, are not adequate for under-

sized data. Recently, Niyogi and Girosi [17] dis-

cussed mathematically the problem of approximating

functions from scattered data using linear superposi-

tions of nonlinearly parameterized functions.

In the present study we are interested in expanding

the applicability of the ANN method to the prediction

of the performance of heat exchangers used for re-

frigeration applications using very limited amount of

data. To this end, we will use typical experimental

data provided by a heat exchanger manufacturer. In-

itially, the ANN approach will be applied to the data

to show its capability in the representation of heat

rates. Later, we will develop a methodology based on

the cross-validation procedure to estimate the expected

error of the ANN approach constructed from under-

Nomenclature

cp speci®c heat (J/kg K)
D tube diameter (m)
H height of heat exchanger (m)

hfg enthalpy of transformation, liquid to vapor
(J/kg)

hif enthalpy of transformation, solid to liquid (J/

kg)
L length of heat exchanger (m)
M number of experimental data sets
_m mass ¯ow rate (kg/s)
N number of independent inputs
Ncol number of columns
Nrow number of rows

Ncir number of circuits
Oi output variable for run i
_Q heat transfer rate between ¯uids (W)

R Euclidean distance to centroid
Scv absolute value of percentage error in cross-

validation

Se root mean square of percentage error
T ¯uid temperature (8C)

t ®n thickness (m)
W width of heat exchanger (m)
w humidity ratio (kg/kg)

xa tube spacing in the longitudinal direction (m)
xb tube spacing in the transverse direction (m)

Greek symbol
d ®n spacing (m)

Subscripts and superscripts
a air side
db dry bulb
e experimental value

in inlet
l latent
out outlet

p predicted value
s sensible
t total

r refrigerant side
w water
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sized data when determining heat exchanger behavior
under di�erent conditions. Finally, the proposed tech-

nique will be applied to the available experimental
measurements to con®rm the validity of the method.

2. Experimental data

Limited experimental data from a series of tests of

several multi-row multi-column ®n-plate type heat
exchangers with staggered tubes, schematically shown
in Fig. 1, were provided by the manufacturer Tyler Re-

frigeration Corp. The type of heat exchangers tested
were all for refrigeration applications with atmospheric
air ¯owing outside the tubes and between the ®n
passages, and refrigerant Freon 22 as the ¯uid inside

the tubes. In the air-side, under certain conditions, not
only condensation but also frost formation over the
®ns and tubes would occur. Inside the tubes, in the re-

frigerant-side, regions of liquid and vapor also coexist.

The heat exchangers had nominal sizes in the range

from 818-mm length by 100-mm height to 3328-mm

length by 230-mm height, and were similar in shape.

All the geometrical parameters are shown in Fig. 1.

The experiments were conducted for a limited number

of operating conditions with large variations of the

geometrical parameters. Di�erent geometries were con-

sidered by varying the lengths, L; ®n spacings, d; num-

bers of rows, Nrow; number of columns, Ncol; number

of circuits, Ncir; and tube±center distances, xa and xb.

However, the tube diameter, D, was kept unaltered.

The measured variables were the inlet and the outlet

air temperatures, T a,db
in and T a,db

out , respectively, the

inlet refrigerant temperature, Tr
in; the inlet humidity

ratio of air, wa
in; the mass ¯ow rate of air, _ma; and the

rate of defrosted water, _mw: The sensible and latent

heat transfer rates, _Qs and _Ql were determined for

each geometry under conditions of thermal equilibrium

between the air-side and the refrigerant-side by means

of

Fig. 1. Schematic of a compact heat exchanger with air and R22 as ¯uids.

A. Pacheco-Vega et al. / Int. J. Heat Mass Transfer 44 (2001) 763±770 765



_Qs � _macp,a�T in
a,db ÿ T out

a,db� �1�

_Ql � _mw�hif � hfg� �2�

where, cp,a is the speci®c heat of air, hif is the latent

heat of transformation of the water from solid to
liquid and hfg is the latent heat from liquid to vapor.
The total heat rate is given by

_Qt � _Qs � _Ql �3�
The total number of experiments carried out were

only M= 38 by varying the N= 11 independent vari-

ables L, d, Nrow, Ncol, Ncir, xa, xb, _ma, T a,db
in , wa

in, T r
in.

3. Prediction of the heat rate

Among the various kinds of ANNs that exist, the

feedforward con®guration has become the most popu-
lar in engineering applications [18], and it is the type
of network used in this study. A fully connected ANN

consists of a large number of interconnected processing
elements that are organized in layers. An input layer,
one or several hidden layers and an output layer form

the structure of a feedforward neural network, with all
the nodes of each layer being connected to all the

nodes of the following layer by means of synaptic con-
nections. A typical feedforward architecture is schema-
tically illustrated in Fig. 2. This con®guration has one

input layer, two hidden layers and one output layer.
During the feedforward stage, a set of input data is
supplied to the input nodes and the information is

transferred forward through the network to the nodes
in the output layer. The nodes perform nonlinear
input±output transformations by means of a sigmoid

activation function. Such nonlinear mapping capability
and the fact that the neurons are massively connected
enable the ANN to estimate any function without the
need of an explicit mathematical model of the physical

phenomenon. The training process is carried out by
comparing the output of the network to the given
data. The weights and biases are changed in order to

minimize the error between the output values and the
data [5] for which the scheme used in this study is the
backpropagation algorithm [19]. Feedforward followed

by backpropagation of all the data comprises a train-
ing cycle. The con®guration of the ANN is set by
selecting the number of hidden layers and the number

of nodes in each hidden layer, since the number of
nodes in the input and output layers are determined
from physical variables. All variables are normalized in
the (0.15, 0.85) range. The mathematical background,

the procedures for training and testing the ANN, and
an account of its history can be found in the text by
Haykin [20].

A ®rst step is to select the con®guration of the ANN
and the number of training cycles. This is a trial and
error process [5] in which either may be changed if the

performance of the network during training is not
good enough. The performance is evaluated by calcu-
lating the rms values of the output errors

Se �
24 1

M

XM
i�1

 
O

p
i ÿOe

i

Oe
i

! 2
351=2

�4�

at each stage of the training. Here i=1, . . . , M, where

O
p
i � f _Qtgpi are the predictions, Oe

i � f _Qtgei are the ex-
perimental output values, and M is the total number
of training data sets.
In order to show the capability of the ANN to

model complex phenomena with very few data sets, we
took the total of M = 38 experimental runs and
trained the fully connected 11-11-7-1 ANN shown in

Fig. 2. A reasonably low-level of error in the training
process [6] is obtained when a number of cycles of
400 000 is chosen. The N= 11 input nodes correspond

to the variables: _ma, T a,db
in , wa

in, T r
in, L, d, xa and xb,

Nrow, Ncol, and Ncir, with the geometrical quantities
scaled by tube diameter D; the output node corre-

Fig. 2. Con®guration of an 11-11-7-1 neural network for ®n-

tube heat exchanger.
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sponds to the total heat rate _Qt: The resulting function

_Qt � _Qt

�
_ma, T

in
a,db, w

in
a , T

in
r ,

L

D
,
d
D
, Nrow, Ncol, Ncir,

xa

D
,
xb

D

�
is a manifold in a 12-dimensional space. The prediction
of _Qt obtained from the trained ANN plotted against
the available experimental data is shown in Fig. 3. The
straight line indicates the equality between the pre-

dicted and experimental values of the heat transfer
rates. It can be noticed that both the accuracy and the
precision of the results are remarkable. The root-

mean-square error of the percentage di�erence between
the predictions and measurements is less than 1.5%,
approaching the uncertainties in the experiments.

4. Error estimation

In order to use ANNs as a reliable tool for thermal

analysis and design of heat exchangers, we have to
take into account the factors that in¯uence its predic-
tions. As noted by several authors [14±17,21], the per-

formance of neural networks is in¯uenced by noise
corruption, spatial distribution and size of the data
used to construct the ANN model, and the character-

istics of the ANN, i.e. the number of layers, number of
hidden nodes, the architecture, etc. Noisy data associ-
ated with uncertainties in measurements are generated
in the experiments. The noise can be maintained at a

very small value if the experiments are carried out with

care and using accurate instruments. The fact that the

ANN is comprised of a ®nite number of hidden layers

and nodes per layer to approximate an unknown func-

tion also introduces an error. The magnitude of this

error depends on the representational capability of the

ANN may increase due to over®tting. It as the size of

the ANN becomes large. Another source of error

stems from the fact that only ®nite data are available

for training. As the number of training data sets

increases, the error decreases. Niyogi and Girosi [17]

demonstrated that it is not possible to reduce the

upper bounds on errors due to ANN size and limited

training data simultaneously. Thus if we want to rely

on the ability of the ANN to generalize the relation-

ship between the input and output quantities that gov-

ern the heat transfer phenomena in a heat exchanger

we will have to be very careful in providing an ade-

quate training set. On the other hand, as a conse-

quence of being applied in regions beyond the range of

available training data, ANNs are very likely to have a

poor performance on their predictions. In fact, for a

®xed neural network con®guration, we may have two

limits depending on the availability of the training

data and the number of inputs to the ANN. The ®rst

arises when the number of measurements is very large.

In such a case, if the network is used outside the con-

vex hull of the training data [13], then the error in the

predictions of the ANN will be large because there are

no data in the region to support the predictions. Inside

the domain given by the convex hull, the empty spaces,

where measurements are absent, are small in size and

Fig. 3. Experimental vs. predicted _Qt: Straight line is the prefect prediction.
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there is little degradation of the ANN predictions. The

second limit appears when there are very few training
experiments. The voids inside the convex hull of the
data are large enough so that they contribute to the in-

accuracy of predictions made by the ANN in these
regions.

Since the size, density and distribution of the train-
ing data are intrinsically linked to the reliability of the

ANN predictions, it is crucial to determine the import-
ance or in¯uence of each data set. We use a variant of
the statistical tool known as cross-validation [22] to

establish a methodology to determine the validity of
the ANN predictions by relying on the importance

that each training data set has in the trained ANN.
This method estimates the error of statistical prediction
models [23] and has been widely applied to di�erent

types of neural networks in a number of ways. Prechelt
[24] presents a guide to select the criteria for automatic

early stopping in order to detect over®tting when train-
ing multilayer perceptrons using the cross-validation,
while Leonard et al. [25] use the technique to ®nd the

optimal architecture in radial basis functions networks.
From the M available sets of experimental data, (M

ÿ 1) are used to train the ANN. After the training is
®nished, the data set left out is predicted and the result

is compared to the experimental value. The percentage
error, Scv, is a measure of the importance of that par-
ticular set of data with respect to all the measurements.

If, for instance, a large value of this error is obtained,
the point excluded during the training process is im-

portant and its absence will produce an ANN with

poor estimation and generalization capabilities. On the
other hand, if the associated error Scv is small, it

means that the data set has enough support from its
neighbors that its presence is not very important. This
procedure is repeated M times, once for each training

data set. We now create a neural network model of the
error surface associated with Scv, which can estimate
the error associated for a new set of design variables.

In order to test the methodology proposed we take
the M = 38 data sets provided by the manufacturer
and follow the procedure outlined above. The error

surface is shown in Fig. 4 as a bar-plot of Scv as a
function of the data set. The latter are ordered accord-
ing to its Euclidean distance R in 11-dimensional space
from the centroid of all M sets. It can be observed

that the error values are in the range 0±60%.

5. Validation of error estimate procedure

In order to con®rm the estimate of the procedure
presented in the previous section, we take one exper-
iment out of the manufacturer's data and look at the
remaining measurements as if they were the total avail-

able. Thus, we have M = 37. The experiment taken
out is put aside and considered to be a `test exper-
iment'. The error estimation technique is applied to the

M data sets and the actual error of the test experiment
compared with the estimation.
Three typical test experiments were selected in the

small, medium and large error range, respectively. For

Fig. 4. Bar diagram of error estimation.
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the ®rst test, the estimated error was determined to be
0.761% while the actual error was calculated as

0.112%. The second test gave 23.3% and 6.19%, re-
spectively, while the 48.78% and 14.21% were the
values for the third one. All the networks considered

had an 11-11-7-1 con®guration and 400 000 training
cycles were used to ensure a reasonable level of error.
For all the three tests, the error estimates are larger

than the actual errors, indicating that the method pro-
vides an upper bound estimate for the error in ANN
predictions.

6. Conclusions

In the present study we have applied the ANN
approach to accurately model the thermal character-

istics of refrigerating heat exchangers. Because of the
inherent attributes of the ANN technique, which tra-
ditional analysis including standard correlations does
not have, ANNs can predict given experimental data

with errors of the same order as the uncertainty of the
measurements. Even when discrete variables such as
those in heat exchanger geometry are involved, its abil-

ity to recognize patterns allows the neural network to
capture all the complex physics without the need of
assuming mathematical models of the process. These

features, in principle, make the ANN approach suit-
able for use in the estimation of the heat rates under
di�erent conditions.

Correlations and neural networks, being empirical
models of complex systems, are constructed based on
the experimental information. Their e�ectiveness in
estimating the heat rates under operating conditions

di�erent from those used in their development, depend
on the number and distribution of these measurements.
Models constructed from large, dense and well-distrib-

uted measurements will tend to have smaller errors,
while those built from undersized data will perform
poorly. Limited data arise from the fact that in indus-

trial applications, such as heat exchanger manufacture,
it is not economically possible to perform a large num-
ber of experiments.
We have presented a methodology for the estimation

of errors from an ANN trained with a limited number
of data sets. A low value of the estimated error is an
indication that there are su�cient experimental data to

support the ANN prediction; while a large error will
indicate the absence of enough points to aid in the
ANN predictions and more experiments would be

needed in order to improve these. The procedure pro-
posed here can help the manufacturer to plan new
measurements by showing where these are needed.
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